Chapter 2: Genetics - Some Basic Fundamentals

1. Introduction to Genetics:

Genetics is the study of heredity and the variation of inherited characteristics. It explains how traits are passed from parents to offspring through genes.

2. Mendel's Laws of Inheritance:

Gregor Mendel, the father of genetics, formulated three fundamental laws based on his experiments with pea plants:

1. Law of Dominance:

 In a pair of contrasting traits, one trait (dominant) masks the expression of the other trait (recessive).

2. Law of Segregation:

 Allele pairs separate during the formation of gametes, and each gamete carries only one allele for each trait.

3. Law of Independent Assortment:

o Genes for different traits are inherited independently of each other.

3. Monohybrid Cross:

- A monohybrid cross involves the inheritance of a single trait.
- **Example:** Crossing a tall pea plant (TT) with a short pea plant (tt).
- Genotype Ratio (F2 generation): 1:2:1 (TT:Tt:tt)
- **Phenotype Ratio:** 3:1 (Tall:Short)

4. Dihybrid Cross:

- A dihybrid cross involves the inheritance of two traits.
- **Example:** Crossing pea plants with round yellow seeds (RRYY) and wrinkled green seeds (rryy).
- Phenotype Ratio (F2 generation): 9:3:3:1

o (Round Yellow: Round Green: Wrinkled Yellow: Wrinkled Green)

5. Important Genetic Terms:

- **Gene:** A segment of DNA that codes for a trait.
- **Allele:** Different forms of a gene (e.g., T and t for height).
- **Homozygous:** Having two identical alleles for a trait (TT or tt).
- **Heterozygous:** Having two different alleles for a trait (Tt).
- **Dominant:** The allele that expresses itself in the phenotype (T).
- **Recessive:** The allele that gets masked by the dominant one (t).
- Mutation: A change in the DNA sequence leading to variations.
- Variation: Differences in traits among individuals of the same species.
- **Phenotype:** The observable traits of an organism (e.g., tall plant).
- **Genotype:** The genetic makeup of an organism (e.g., TT, Tt, tt).

6. Sex Determination in Human Beings:

- The sex of a human is determined by the combination of sex chromosomes:
 - o Male: XY
 - Female: XX
- The male gamete (sperm) can carry either X or Y, while the female gamete (egg) always carries X.
- If the sperm carries X and fuses with the egg (X), the offspring will be female (XX).
- If the sperm carries Y and fuses with the egg (X), the offspring will be male (XY).

7. Sex-Linked Inheritance:

Some genetic disorders are linked to the X chromosome (X-linked inheritance). These include:

- **Haemophilia:** A disorder where blood doesn't clot properly.
- Colour Blindness: An inability to distinguish between certain colors.
- Since males have only one X chromosome, they are more likely to be affected by X-linked disorders compared to females, who have two X chromosomes (one of which can mask the effect if normal).

8. Key Points:

- Mendel's experiments laid the foundation for understanding heredity.
- Monohybrid and dihybrid crosses help predict genetic outcomes.
- Sex determination is based on the combination of sex chromosomes.
- X-linked inheritance affects males more frequently due to the presence of a single X chromosome.

